If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2=20x
We move all terms to the left:
50x^2-(20x)=0
a = 50; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·50·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*50}=\frac{0}{100} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*50}=\frac{40}{100} =2/5 $
| 4z+31=12z-65 | | (3x-2)^2-9=0 | | 3x-57=18 | | 2a-54=a+44 | | 1876=75a+346(-9,841) | | 13y-63=12y-51 | | 28+2p=76 | | v+24=3v-36 | | 2x-3+7x=-24 | | z-39=2z-96 | | 7/4w-12+1=-(4/w-3) | | 6x+(5x+10)=180 | | x+65=4x+59 | | 18p=396 | | 32/3=1/5p | | 642x−8=256 | | 7p+12=19p | | -30=-9n-3 | | -0.7x+0.5+1.2x=0.5+0.8 | | 2z*15=0 | | 1876=75(-1,6b+30,8)+346b | | 1/6=5/6k | | 1/((x+5)+5)=0 | | -16t2+120t+80=0 | | 1/(x+5)+5=0 | | 1/2(6x+80-x=2x+8 | | Y-5=(-6)(x-3) | | d/3+-8=-12 | | 3/s+-8=-12 | | z+15=5z-73 | | (X-14)÷2=(x+8)÷3 | | 9^x+1-28*3^x+3=0 |